CH 2, 3, \& 6 PHYSICS REVIEW - MOTION

1. Jake walks east through a passenger car on a train that moves $10 \mathrm{~m} / \mathrm{s}$ in the same direction. Jake's speed relative to the car is $2 \mathrm{~m} / \mathrm{s}$. Jake's speed relative to an observer at rest outside the train is
a. $2 \mathrm{~m} / \mathrm{s}$.
(d. $8 \mathrm{~m} / \mathrm{s}$.
b. $5 \mathrm{~m} / \mathrm{s}$.
2. A gazelle travels 2 km in a half hour. The gazelle's average speed is
a. $1 / 2 \mathrm{~km} / \mathrm{h}$.
b. $1 \mathrm{~km} / \mathrm{h}$.
$2 \mathrm{~km} / \mathrm{h}$.
$4 \mathrm{~km} / \mathrm{h}$.
3. Constant speed in a constant direction is
a. constant velocity.
c. instantaneous speed.
D. constant acceleration.
d. average velocity.
4. A vehicle undergoes acceleration when it
a. gains speed.
changes direction.
all of the above
b. decreases speed.
5. If a falling object gains $10 \mathrm{~m} / \mathrm{s}$ each second it falls, its acceleration can be expressed as
a. $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
b. $\quad 10 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathrm{v}=\mathrm{gt}$.
both A and B .
6. The slope of a speed-versus-time graph represents
a. distance traveled.
c. acceleration.
b. velocity.
d. air resistance.
7. If an object has an acceleration of $0 \mathrm{~m} / \mathrm{s}^{2}$, then one can be sure that the object is not \qquad .
a. Moving
b. Changing position
Changing velocity
8. A rock falls 180 m from a cliff into the ocean. How long is it in free fall?
a. 6 s
b. 10 s
c. 18 s
d. 180 s
9. When no air resistance acts on a projectile, its horizontal acceleration is
a. g.
b. at right angles to g.
upward, g.
zero.
10. Without air resistance, the time for a vertically tossed ball to return to where it was thrown is
a. $10 \mathrm{~m} / \mathrm{s}$ for every second in the air.
c. less than the time going upward.
b. the same as the time going upward.
d. more than the time going upward.
11. A fullback is running down the football field in a straight line. He starts at the 0 -yard line at 0 seconds. At 1 second, he is on the 10 -yard line; at 2 seconds, he is on the 20 -yard line; at 3 seconds, he is on the 30 -yard line; and at 4 seconds, he is on the 40 -yard line. What is the player's acceleration? No horizontal acceleration, $0 \mathrm{~m} / \mathrm{s}^{2}$
12. Olympic gold medalist Michael Johnson runs one time around the track - 400 meters - in 38 seconds. What is his displacement?
0 meter displacement
13. If an object is moving eastward and slowing down, then the direction of its velocity vector is \qquad .
a. astward
b. westward
c. neither
d. not enough info to tell

Use the graph to answer the following questions.
14. Describe the motion of the object.

Starts with a high negative velocity $(-15 \mathrm{~m} / \mathrm{s})$ and then starts to slow down (+ acceleration) to $0 \mathrm{~m} / \mathrm{s}$ in 8 seconds.
15. Determine the acceleration of the object from the graph. $1.875 \mathrm{~m} / \mathrm{s}^{2}$

Consider the velocity-time graph at the right for several different objects, each represented by a numbered line.

Use the graph to answer the next several questions. For each question, there may be more than one line which applies.
16. Which object(s) is/are moving with a constant velocity during the entire motion?
17. Which object(s) is/are speeding up during the entire motion? 9
18. Which object(s) is/are slowing down during the entire motion? 5
19. Which object(s) change(s) direction at anytime during the motion?
20. Which object(s) is/are moving with a positive acceleration at any time during the motion?

3 \& 5
$3,7,9, \& 2$
22. Consider the velocity-time graph below.

Determine the acceleration (in $\mathrm{m} / \mathrm{s} / \mathrm{s}$) of the object at 8 seconds.
$2.7 \mathrm{~m} / \mathrm{s}^{2}$

