## Circular Motion Commotion - Answer Key

1) A lighthouse sweeps out a beam four times every minute.

What is its period?
Givens:
Time $=$ one minute $=60 \mathrm{sec}$
Revolutions $=4$ cycles
Equation:
Period ( T ) = Time / cycle
Answer:
$\mathrm{T}=60 \mathrm{sec} / 4$ cycles $=15$ seconds
What is the tangential velocity of the lighthouse beam on an object 500 m from the lighthouse?
Givens:
Radius $=500 \mathrm{~m}$
Period $=15 \mathrm{sec}$
Equation:
Tangent Velocity $=(2 \Pi R) / T$
Answer:
$V=3140 \mathrm{~m} / 15 \mathrm{sec}=209.3 \mathrm{~m} / \mathrm{s}$
2) A yoyo is whipped around in a clockwise circle that has a radius of .80 m . The yoyo revolves once every second and has a mass of .60 kg

What is the period of the yoyo?
Givens:
Radius $=.80 \mathrm{~m}$
Revolution $=1$
Time $=1$ second
Mass $=.60 \mathrm{~kg}$
Equation:
Period $(\mathrm{T})=$ Time $/$ cycle
Answer:
$\mathrm{T}=1 \mathrm{sec} / 1$ cycles $=1$ second
What is the frequency of the yoyo?
Givens:
Radius $=.80 \mathrm{~m}$
Revolution = 1
Time $=1$ second
Mass $=.60 \mathrm{~kg}$
Equation:
Frequency (f) = Cycle $/$ Time
Answer:
F = 1 cycle / 1 sec $=1$ cycle / sec or hertz
What is the tangential velocity?
Givens:
Radius $=.80 \mathrm{~m}$
Revolution = 1
Period $=1$ second
Mass $=.60 \mathrm{~kg}$
Equation:
Tangent Velocity $=(2 \Pi R) / T$
Answer:

$$
\begin{aligned}
& V=5.024 \mathrm{~m} / 1 \mathrm{sec} \\
& \mathrm{~V}=5.024 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

What is the centripetal acceleration?
Givens:
Radius $=.80 \mathrm{~m}$
Revolution $=1$
Period $=1$ second
Mass $=.60 \mathrm{~kg}$
Equation:
Centripetal Acceleration $\left(\mathrm{A}_{\mathrm{c}}\right)=\mathrm{V}^{2} / \mathrm{r}$
Answer:
$A=25.24 \mathrm{~m}^{2} / \mathrm{s}^{2} / .8 \mathrm{~m}=31.6 \mathrm{~m} / \mathrm{s}^{2}$
What is the centripetal force?
Givens:
Radius $=.80 \mathrm{~m}$
Revolution $=1$
Period $=1$ second
Mass $=.60 \mathrm{~kg}$
Equation:
Centripetal force $\left(F_{c}\right)=M \times A_{c}$
Answer:
$\mathrm{F}_{\mathrm{c}}=.60 \mathrm{~kg} \times 31.6 \mathrm{~m} / \mathrm{s}^{2}=18.9 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ or N
3) A bug sits on an old phonograph record which spins at a rate of $331 / 3 \mathrm{rpm}$. The bug sits .15 m from the center of the record.

What is the tangential velocity of the bug?
Givens:
Radius $=.15 \mathrm{~m}$
Revolution = 33.3
Time $=1 \mathrm{~min}=60$ seconds
Equation:
Tangent Velocity $=(2 \Pi R) / T$
Period (T) = Time / Cycle
$\mathrm{T}=60 \mathrm{sec} / 33.3$
$\mathrm{T}=1.8 \mathrm{sec}$
Answer:
$V=.942 \mathrm{~m} / 1.8 \mathrm{sec}$
$\mathrm{V}=.52 \mathrm{~m} / \mathrm{s}$
What is the frequency of the bug?
Givens:
Radius $=.15 \mathrm{~m}$
Revolution $=33.3$
Time $=1 \mathrm{~min}=60$ seconds
Equation:
Frequency (f) = Cycle $/$ Time
Answer:
$f=33.3 \mathrm{rev} / 60 \mathrm{sec}$
$\mathrm{f}=.56 \mathrm{rev} / \mathrm{sec}$ or hz

