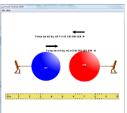
Period:

Gravity Force Lab

PHET GRAVITY LAB


Go to http://phet.colorado.edu/en/simulation/gravity-force-lab

Qualitative Observations

- 1. Move the masses closer. When the masses move closer together the force between them becomes (Greater/Less/the same)
- 2. Move the masses further apart. When the masses move away the force between them becomes (Greater/Less/the same)
- 3. Double Mass 1. When mass 1 is doubled the force between them becomes_(Greater/Less/the same)
- 4. Cut Mass 2 in half. When the mass is reduced the force between them becomes (Greater/Less/the same)
- 5. In any of the situations did the forces ever differ from one another in magnitude?
- 6. In any of the situations did the forces ever not point in opposing directions?
- 7. What physics LAW explains questions 5 and 6 (either give name or definition)

Quantitative Analysis: It is now time to build a model. First, let us examine the relationship between mass and force.

- 8. Separate Mass 1 and Mass 2 so that their centers of mass (*black dots*) are 6 meters apart.
- 9. Set Mass 2 to 30.0 kg.
- 10. Start Mass 1 at 1.0 kg. Collect 8 data points with the gravitational force being your dependent variable and your Mass 1 being independent. Record your data in Table 1.1. *Hint: Write all force values to the same scientific notation power (i.e.* $-x \ 10^{-10}$)
- 11. Redo the experiment but set Mass 1 to 30.0 kg and collect data on Mass 2's relationship to force. Record your data in a table labeled Table 1.2.

Table 1.1			Table 1.2		
Mass 1 (kg)	Mass 2 (kg)	Force (N)	Mass 1 (kg)	Mass 2 (kg)	Force (N)
1	30		30	1	
5	30		30	5	
8	30		30	8	
10	30		30	10	
18	30		30	18	
20	30		30	20	
25	30		30	25	
30	30		30	30	

- 12. Does it matter which mass increases?
- 13. What type of relationship is there between Mass and force?

Now, let us examine the relationship between distance and force.

- 14. Set both masses to 5 kg.
- 15. Collect 8 data points with the gravitational force being your dependent variable and the distance between the masses being your independent variable. *Note: Take note you can move the ruler and the masses to maximize your range.* Record your data in a table 2.1 below.

Table2.1 (Masses held constant :	Mass1 = 5kg,	Mass2 = 5 kg)
----------------------------------	--------------	---------------

	- 0/
Distance (meters)	Force (N)
10.0	
8.0	
6.6	
5.8	
4.6	
3.4	
2.0	
1.5	

16. What type of relationship do you think exists between distance and the force of gravity?