What is the equation for this line?

Velocity vs. Time Graphs

Be able to create velocity vs. time graphs if given the motion of the object.

Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

- The object is moving in the positive direction at a constant (steady) speed.
 - Not changing speed = flat line
 - Same Velocity #
 - No Acceleration

Motion map common mistake

 Students have been known to draw the motion map and state that B was moving faster than A because the velocity vectors were longer, despite the fact that the positions of A and B are the same at each instant. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

- 2. The object is standing still.
 - Not moving
 - 0 m/s

0 m

start (

end

• No Acceleration

3) The object moves in the negative direction at a steady speed for 10s, then stands still for 10s.

- Toward the origin = (-)Velocity
 - Speed not changing = flat line
- Stop 0 m/s
 - If velocity and acceleration have same sign (+ or -) the object is speeding up
 - If velocity and acceleration have opposite signs the object is slowing down.

4. The object moves in the positive direction at a steady speed for 10s, reverses direction and moves back toward the negative direction at the same speed.

- Moves away from the origin = (+) V
 - Steady or constant speed = flat line
- Moves toward origin = (-) Velocity
 - Steady speed = flat line

Draw the velocity vs time graphs for an object whose motion produced the position vs time graphs shown below at left.

5. Slope = $\frac{\Delta Y}{\Delta X}$ = • 4/4 = (+)1m/s

- Flat line = no acceleration, same speed.
- (+) Velocity = moving away

Draw the velocity vs time graphs for an object whose motion produced the position vs time graphs shown below at left.

▶<u>time</u> (s)

Draw the velocity vs time graphs for an object whose motion produced the position vs time graphs shown below at left.

• B = 2/4 = .5 m/s

• Deceleration or (- acceleration) from 2 m/s to .5 m/s

8. For many graphs, both the **slope** of the line and the **area** between the line and the horizontal axis have physical meanings.

Ň

t

- a) What does the slope of a position time graph tell you about the motion of an object?
 - The slope of position vs time graphs gives you average velocity over that time interval.
- b) Looking at the velocity time graphs, determine the units for a square of area on the graph.
 - The units for the area under a velocity vs. time graph are (m/s) (s) = m.
- c) What does the area "under the velocity-time graph" tell you about the motion of an object?
 - The area under a velocity vs. time graph tells you change in position during that time interval.