Upton Chuck is riding the Giant Drop at Great America. If Upton free falls for 2.60 seconds, what will be his final velocity and how far will he fall?

- Givens
- $\mathrm{T}=2.6 \mathrm{sec}$
- $\mathrm{V}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}$
- Unknown
- V_{f}
- D
- Equation
- $\mathrm{Vf}=\mathrm{gxt}$
- $D=.5 \times g \mathrm{t}^{2}$
- Substitute
- $\mathrm{Vf}=-10 \mathrm{~m} / \mathrm{s}^{2} \times 2.6 \mathrm{sec}$
- $\mathrm{D}=.5 \times\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right) \times(2.6 \mathrm{sec})^{2}$
- Answer
- $\mathrm{Vf}=-26 \mathrm{~m} / \mathrm{s}$ (downwards)
- $\mathrm{D}=-33.8 \mathrm{~m}$

If Michael Jordan has a vertical leap of 1.29 m, then what is his takeoff speed and his hang time (total time to move upwards to the peak and then return to the ground)?

- Givens
- D = 1.29 m
- Unknown
- T

Vi

- Equation
- $D=.5 \times g \times t^{2}$
- $\mathrm{Vf}=\mathrm{Vi}+\mathrm{g}(\mathrm{t})$
- Substitute
- $1.29 \mathrm{~m}=.5 \times\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right) \times(\mathrm{t})^{2}$
- $.258=\mathrm{t}^{2}$
- $0 \mathrm{~m} / \mathrm{s}=\mathrm{Vi}+(-10 \mathrm{~m} / \mathrm{s} 2)(.5 \mathrm{sec})$
- $0 \mathrm{~m} / \mathrm{s}=\mathrm{Vi}+(-5 \mathrm{~m} / \mathrm{s})$
- Answer
- $T=.5 \mathrm{sec}$ (up) $=1.02 \mathrm{sec}$ (up and down)
- $\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}$

A baseball is popped straight up into the air and has a hangtime of 6.25 s . Determine the height to which the ball rises before it reaches its peak. (Hint: the time to rise to the peak is one-half the total hang-time.)

- Givens
- $T($ up + down $)=6.25 \mathrm{sec}$
- $\mathrm{T}(\mathrm{up})=3.125 \mathrm{sec}$
- Unknown
- D
- Equation
- $D=.5 \times \mathrm{gxt}^{2}$
- Substitute
- $D=.5 \times\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right) \times(3.125 \mathrm{sec})^{2}$
- Answer
- $\mathrm{D}=48.8 \mathrm{~m}$
- $\mathrm{Vf}=\mathrm{gxt}$
- $\mathrm{Vf}=-10 \mathrm{~m} / \mathrm{s} 2(3.125 \mathrm{sec})$
- $\mathrm{Vf}=-31.25 \mathrm{~m} / \mathrm{s}$

