\qquad

Scientific Notation/Significant Digits Worksheet
A) Convert each of the following into scientific notation.

1. 3427
3.427×10^{3}
2. 172
3. 0.00456
4. 3100.0×10^{2}
5. 123,453
6. 0.0114×10^{4}
B) Determine the number of significant figures in each of the following:
7. 3427
-4
8. 0.000984
9. 0.00456
10. 0.502
11. 123,453
12. 3100.0×10^{2}
C) Convert each into decimal form.
13. $1.56 \times 10^{4} \quad \mathbf{1 5 , 6 0 0}$
14. 0.56×10^{-2}
15. 3.69×10^{-2}
16. 736.9×10^{5}
17. 0.00259×10^{5}
18. 13.69×10^{-2}
D) Round each of the following to 3 significant figures.
19. 77.0653
77.1
20. $6,300,278.2$
21. 0.00023350
22. 2.895×10^{21}
E) Calculate the answer, use the correct number of significant figures.
23. $(0.32)(14.50)(120)=5.6 \times 10^{2}$
24. $(24.1) /(0.005)=$
25. $(3.9)(6.05)(420)=$
26. $(14.1) / 5=$

Scientific Notation/Significant Digits Worksheet
A) Convert each of the following into scientific notation.

1. 3427
3.427×10^{3}
2. 172
1.72×10^{2}
3. 0.00456
4.56×10^{-3}
4. $3100.0 \times 10^{2} 3.1000 \times 10^{5}$
5. 123,453
1.23453×10^{5}
6. $0.0114 \times 10^{4} 1.14 \times 10^{2}$
B) Determine the number of significant figures in each of the following:
7. 3427
4
8. 0.0009843
9. 0.00456
3
10. 0.5023
11. 123,453
6
12. $3100.0 \times 10^{2} 5$
C) Convert each into decimal form.
13. $1.56 \times 10^{4} \quad \mathbf{1 5 , 6 0 0}$
14. 736.9×10^{5}
73,690,000
15. $0.56 \times 10^{-2} 0.0056$
16. 0.00259×10^{5}
259
17. 3.69×10^{-2}
0.0369
18. 13.69×10^{-2}
0.1369
D) Round each of the following to 3 significant figures.
19. 77.0653
77.1
20. $6,300,278.2$

6,300,000
3. 0.00023350
0.000234
4. 2.895×10^{21}
2.90×10^{21}
E) Calculate the answer, use the correct number of significant figures.

1. $(0.32)(14.50)(120)=5.6 \times 10^{2}$
2.

$(24.1) /(0.005)=$ 5×10^{3}
3. $(3.9)(6.05)(420)=$ 9.9×10^{3}
4. $(14.1) / 5=$ 3
\qquad Period: \qquad

METRIC CONVERSIONS

Scientists all over the world use the same system of units so they can communicate information clearly. This system of measurement is called the International System of Units (SI). Metric measurement is based on the number ten and makes calculations with the system relatively easy. By using the following conversion chart, converting from one unit to another is done simply by moving the decimal point:

| Kilo- Hecto- Deca- \quadBase
 Base $=$
 meter ,gram, or liter | deci- centi- milli- |
| :---: | :---: | :---: |

For each of the following commonly used measurements, indicate its symbol. Use the symbols to complete the following sentences with the most appropriate unit. Units may be used more than once or not at all.
\qquad milliliter
\qquad kilogram
\qquad milligram
\qquad millimeter
\qquad kilometer
\qquad second
___ centimeter
___ gram
\qquad meter \qquad liter

1. Coke may be purchased in two or three \qquad bottles.
2. The mass of a bowling ball is 7.25 \qquad .
3. The length of the common housefly is about 1 \qquad .
4. The mass of a paperclip is about 1 \qquad .
5. One teaspoon of cough syrup has a volume of 5 \qquad .
6. Stand with your arms raised out to your side. The distance from your nose to your outstretched fingers is about 1 \qquad .
7. On a statistical basis, smoking a single cigarette lowers your life expectancy by 642,000
\qquad , or 10.7 minutes.

Convert the following metric measurements:

$1000 \mathrm{mg}=\ldots \ldots \mathrm{g}$	$198 \mathrm{~g}=\ldots \mathrm{Kg}$	$8 \mathrm{~mm}=\ldots \mathrm{cm}$
$160 \mathrm{~cm}=\ldots \ldots \mathrm{mm}$	$75 \mathrm{~mL}=\ldots \mathrm{L}$	$6.3 \mathrm{~cm}=\ldots \mathrm{mm}$
$109 \mathrm{~g}=\ldots \mathrm{Kg}$	$50 \mathrm{~cm}=\ldots \mathrm{m}$	$5.6 \mathrm{~m}=\ldots \mathrm{cm}$
$250 \mathrm{~m}=\ldots \mathrm{Km}$	$5 \mathrm{~L}=\ldots \ldots \mathrm{mL}$	$26,000 \mathrm{~cm}=\ldots \ldots \mathrm{m}$
$14 \mathrm{Km}=\ldots \mathrm{m}$	$16 \mathrm{~cm}=\ldots \quad \mathrm{mm}$	$56,500 \mathrm{~mm}=\ldots \ldots \mathrm{Km}$
$1 \mathrm{~L}=\ldots \ldots \mathrm{mL}$	$65 \mathrm{~g}=\ldots \ldots \mathrm{mg}$	$27.5 \mathrm{mg}=\ldots \quad \mathrm{g}$
$480 \mathrm{~cm}=\ldots \ldots \mathrm{m}$	$2500 \mathrm{~m}=\ldots \ldots \mathrm{Km}$	$923 \mathrm{~cm}=\ldots \ldots \mathrm{m}$
$27 \mathrm{~g}=\ldots \ldots \mathrm{kg}$	$355 \mathrm{~mL}=\ldots \mathrm{L}$	$0.025 \mathrm{Km}=\ldots \ldots \mathrm{cm}$

Metric Conversions - Answer Key

For each of the following commonly used measurements, indicate its symbol. Use the symbols to complete the following sentences with the most appropriate unit. Units may be used more than once or not at all.

$\underline{\mathbf{m L}}$ milliliter	$\underline{\mathbf{m g}}$ milligram	$\underline{\mathbf{k m}}$ kilometer	$\underline{\mathbf{c m}}$ centimeter
$\underline{\mathbf{k g}}$ kilogram	$\underline{\mathbf{m m}}$ millimeter	$\underline{\mathbf{s}}$ second	$\underline{\mathbf{g}}$ gram

\underline{m} meter $\underline{\text { L liter }}$

1. Coke may be purchased in two or three liter bottles.
2. The mass of a bowling ball is 7.25 kg .
3. The length of the common housefly is about $1 \mathbf{c m}$.
4. The mass of a paperclip is about 1 mg .
5. One teaspoon of cough syrup has a volume of 5 mL .
6. Stand with your arms raised out to your side. The distance from your nose to your outstretched fingers is about 1 m .
7. On a statistical basis, smoking a single cigarette lowers your life expectancy by 642,000 s, or 10.7 minutes.

Part C

Convert the following metric measurements:

$1000 \mathrm{mg}=1 \mathrm{~g}$	$198 \mathrm{~g}=\underline{\mathbf{0 . 1 9 8}} \mathrm{Kg}$	$8 \mathrm{~mm}=\underline{0.8} \mathrm{~cm}$
$160 \mathrm{~cm}=\underline{1,600} \mathrm{~mm}$	$75 \mathrm{~mL}=\underline{0.075} \mathrm{~L}$	$6.3 \mathrm{~cm}=\underline{63} \mathrm{~mm}$
$109 \mathrm{~g}=\underline{\mathbf{0 . 1 0 9}} \mathrm{Kg}$	$50 \mathrm{~cm}=\underline{0.50} \mathrm{~m}$	$5.6 \mathrm{~m}=\underline{\mathbf{5 6 0}} \mathrm{cm}$
$250 \mathrm{~m}=\underline{\mathbf{0} .250 \mathrm{Km}}$	$5 \mathrm{~L}=\underline{5,000} \mathrm{~mL}$	$26,000 \mathrm{~cm}=\underline{\mathbf{2 6 0}} \mathrm{m}$
$14 \mathrm{Km}=\underline{14,000} \mathrm{~m}$	$16 \mathrm{~cm}=\underline{160} \mathrm{~mm}$	$56,500 \mathrm{~mm}=\underline{\mathbf{0 . 0 5 6 5}} \mathrm{Km}$
$1 \mathrm{~L}=\underline{\mathbf{1 , 0 0 0}} \mathrm{mL}$	$65 \mathrm{~g}=\underline{\mathbf{6 5 , 0 0 0}} \mathrm{mg}$	$27.5 \mathrm{mg}=\underline{0.0275} \mathrm{~g}$
$480 \mathrm{~cm}=\underline{4.8} \mathrm{~m}$	$2500 \mathrm{~m}=\underline{2.5} \mathrm{Km}$	$923 \mathrm{~cm}=\underline{9.23} \mathrm{~m}$
$27 \mathrm{~g}=\underline{0.027} \mathrm{~kg}$	$355 \mathrm{~mL}=\underline{\mathbf{0 . 3 5 5}} \mathrm{L}$	$0.025 \mathrm{Km}=\underline{\mathbf{2 , 5 0 0}} \mathrm{cm}$

Name: \qquad Period: \qquad

UNIT CONVERSION WORKSHEET

Conversions

1 hour $=3600$ seconds
1 meter $=3.28$ feet
$1 \mathrm{~kg}=2.2 \mathrm{lbs}$
$1 \mathrm{~m} / \mathrm{s}=2.2 \mathrm{miles} / \mathrm{hour}$

1 mile $=5280$ feet
$1 \mathrm{~km}=0.62$ miles
$1 \mathrm{lb}=0.45 \mathrm{~kg}$
1 foot $=12$ inches

1 yard $=3$ feet
1 light second $=300,000,000$ meters
1 quart $=0.946$ liters
1 inch $=2.54 \mathrm{~cm}=25.4 \mathrm{~mm}$

Convert the following quantities. Show your work.

1. 565,900 seconds into days
2. 17 years into minutes
3. 43 miles into feet
4. 165 pounds into kilograms
5. 100 yards into meters
6. 22,647 inches into miles
7. 2678 cm into feet
8. 60 miles per hour into meters per second
